metatransformer
MetaTransformer
The metatransformer is responsible for transforming input dataset into a format that can be used by the model
module, and for transforming
this module's output back to the original format of the input dataset.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
dataset |
DataFrame
|
The raw input DataFrame. |
required |
metadata |
Optional[MetaData]
|
Optionally, a |
None
|
missingness_strategy |
Optional[str]
|
The missingness strategy to use. Defaults to augmenting missing values in the data, see the missingness strategies for more information. |
'augment'
|
impute_value |
Optional[Any]
|
Only used when |
None
|
After calling MetaTransformer.apply()
, the following attributes and methods will be available:
Attributes:
Name | Type | Description |
---|---|---|
typed_dataset |
DataFrame
|
The dataset with the dtypes applied. |
post_missingness_strategy_dataset |
DataFrame
|
The dataset with the missingness strategies applied. |
transformed_dataset |
DataFrame
|
The transformed dataset. |
single_column_indices |
list[int]
|
The indices of the columns that were transformed into a single column. |
multi_column_indices |
list[list[int]]
|
The indices of the columns that were transformed into multiple columns. |
Methods:
get_typed_dataset()
: Returns the typed dataset.get_prepared_dataset()
: Returns the dataset with the missingness strategies applied.get_transformed_dataset()
: Returns the transformed dataset.get_multi_and_single_column_indices()
: Returns the indices of the columns that were transformed into one or multiple column(s).get_sdv_metadata()
: Returns the metadata in the correct format for SDMetrics.save_metadata()
: Saves the metadata to a file.save_constraint_graphs()
: Saves the constraint graphs to a file.
Note that mt.apply
is a helper function that runs mt.apply_dtypes
, mt.apply_missingness_strategy
and mt.transform
in sequence.
This is the recommended way to use the MetaTransformer to ensure that it is fully instantiated for use downstream.
Source code in src/nhssynth/modules/dataloader/metatransformer.py
13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 |
|
apply()
Applies the various steps of the MetaTransformer to a passed DataFrame.
Returns:
Type | Description |
---|---|
DataFrame
|
The transformed dataset. |
Source code in src/nhssynth/modules/dataloader/metatransformer.py
apply_dtypes(data)
Applies dtypes from the metadata to dataset
.
Returns:
Type | Description |
---|---|
DataFrame
|
The dataset with the dtypes applied. |
Source code in src/nhssynth/modules/dataloader/metatransformer.py
apply_missingness_strategy()
Resolves missingness in the dataset via the MetaTransformer
's global missingness strategy or
column-wise missingness strategies. In the case of the AugmentMissingnessStrategy
, the missingness
is not resolved, instead a new column / value is added for later transformation.
Returns:
Type | Description |
---|---|
DataFrame
|
The dataset with the missingness strategies applied. |
Source code in src/nhssynth/modules/dataloader/metatransformer.py
drop_columns()
Drops columns from the dataset that are not in the MetaData
.
from_dict(dataset, metadata, **kwargs)
classmethod
Instantiates a MetaTransformer from a metadata dictionary.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
dataset |
DataFrame
|
The raw input DataFrame. |
required |
metadata |
dict
|
A dictionary of raw metadata. |
required |
Returns:
Type | Description |
---|---|
Self
|
A MetaTransformer object. |
Source code in src/nhssynth/modules/dataloader/metatransformer.py
from_path(dataset, metadata_path, **kwargs)
classmethod
Instantiates a MetaTransformer from a metadata file via a provided path.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
dataset |
DataFrame
|
The raw input DataFrame. |
required |
metadata_path |
str
|
The path to the metadata file. |
required |
Returns:
Type | Description |
---|---|
Self
|
A MetaTransformer object. |
Source code in src/nhssynth/modules/dataloader/metatransformer.py
get_multi_and_single_column_indices()
Returns the indices of the columns that were transformed into one or multiple column(s).
Returns:
Type | Description |
---|---|
tuple[list[int], list[int]]
|
A tuple containing the indices of the single and multi columns. |
Source code in src/nhssynth/modules/dataloader/metatransformer.py
get_sdv_metadata()
Calls the MetaData
method to reformat its contents into the correct format for use with SDMetrics.
Returns:
Type | Description |
---|---|
dict[str, dict[str, Any]]
|
The metadata in the correct format for SDMetrics. |
Source code in src/nhssynth/modules/dataloader/metatransformer.py
inverse_apply(dataset)
Reverses the transformation applied by the MetaTransformer.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
dataset |
DataFrame
|
The transformed dataset. |
required |
Returns:
Type | Description |
---|---|
DataFrame
|
The original dataset. |
Source code in src/nhssynth/modules/dataloader/metatransformer.py
transform()
Prepares the dataset by applying each of the columns' transformers and recording the indices of the single and multi columns.
Returns:
Type | Description |
---|---|
DataFrame
|
The transformed dataset. |