utils
EvalFrame
Data structure for specifying and recording the evaluations of a set of synthetic datasets against a real dataset. All of the choices made by the user in the evaluation module are consolidated into this class.
After running evaluate
on a set of synthetic datasets, the evaluations can be retrieved using get_evaluations
.
They are stored in a dict of dataframes with indices matching that of the supplied dataframe of synthetic datasets.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
tasks |
list[Task]
|
A list of downstream tasks to run on the experiments. |
required |
metrics |
list[str]
|
A list of metrics to calculate on the experiments. |
required |
sdv_metadata |
dict[str, dict[str, str]]
|
The SDV metadata for the dataset. |
required |
aequitas |
bool
|
Whether to run Aequitas on the results of supported downstream tasks. |
False
|
aequitas_attributes |
list[str]
|
The fairness-related attributes to use for Aequitas analysis. |
[]
|
key_numerical_fields |
list[str]
|
The numerical fields to use for SDV privacy metrics. |
[]
|
sensitive_numerical_fields |
list[str]
|
The numerical fields to use for SDV privacy metrics. |
[]
|
key_categorical_fields |
list[str]
|
The categorical fields to use for SDV privacy metrics. |
[]
|
sensitive_categorical_fields |
list[str]
|
The categorical fields to use for SDV privacy metrics. |
[]
|
Source code in src/nhssynth/modules/evaluation/utils.py
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 |
|
evaluate(real_dataset, synthetic_datasets)
Evaluate a set of synthetic datasets against a real dataset.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
real_dataset |
DataFrame
|
The real dataset to evaluate against. |
required |
synthetic_datasets |
list[dict[str, Any]]
|
The synthetic datasets to evaluate. |
required |
Source code in src/nhssynth/modules/evaluation/utils.py
get_evaluations()
Unpack the self._evaluations
dataframe, where each metric group is a column, into a dict of dataframes.
Returns:
Type | Description |
---|---|
dict[str, DataFrame]
|
A dict of dataframes, one for each metric group, containing the evaluations. |
Source code in src/nhssynth/modules/evaluation/utils.py
validate_metric_args(args, fn_dataset, columns)
Validate the arguments for downstream tasks and Aequitas.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
args |
Namespace
|
The argument namespace to validate. |
required |
fn_dataset |
str
|
The name of the dataset. |
required |
columns |
Index
|
The columns in the dataset. |
required |
Returns:
Type | Description |
---|---|
tuple[list[Task], Namespace]
|
The validated arguments, the list of tasks and the list of metrics. |