Skip to content

io

check_input_paths(fn_dataset, fn_typed, fn_evaluations, dir_experiment)

Sets up the input and output paths for the model files.

Parameters:

Name Type Description Default
fn_dataset str

The base name of the dataset.

required
fn_typed str

The name of the typed data file.

required
fn_evaluations str

The name of the file containing the evaluation bundle.

required
dir_experiment Path

The path to the experiment directory.

required

Returns:

Type Description
tuple[str, str]

The paths to the data, metadata and metatransformer files.

Source code in src/nhssynth/modules/plotting/io.py
def check_input_paths(fn_dataset: str, fn_typed: str, fn_evaluations: str, dir_experiment: Path) -> tuple[str, str]:
    """
    Sets up the input and output paths for the model files.

    Args:
        fn_dataset: The base name of the dataset.
        fn_typed: The name of the typed data file.
        fn_evaluations: The name of the file containing the evaluation bundle.
        dir_experiment: The path to the experiment directory.

    Returns:
        The paths to the data, metadata and metatransformer files.
    """
    fn_dataset, fn_typed, fn_evaluations = io.consistent_endings([fn_dataset, fn_typed, fn_evaluations])
    fn_typed, fn_evaluations = io.potential_suffixes([fn_typed, fn_evaluations], fn_dataset)
    io.warn_if_path_supplied([fn_dataset, fn_typed, fn_evaluations], dir_experiment)
    io.check_exists([fn_typed], dir_experiment)
    return fn_dataset, fn_typed, fn_evaluations

load_required_data(args, dir_experiment)

Loads the data from args or from disk when the dataloader has not be run previously.

Parameters:

Name Type Description Default
args Namespace

The arguments passed to the module, in this case potentially carrying the outputs of the dataloader module.

required
dir_experiment Path

The path to the experiment directory.

required

Returns:

Type Description
tuple[str, DataFrame, DataFrame, dict[str, dict[str, Any]]]

The data, metadata and metatransformer.

Source code in src/nhssynth/modules/plotting/io.py
def load_required_data(
    args: argparse.Namespace, dir_experiment: Path
) -> tuple[str, pd.DataFrame, pd.DataFrame, dict[str, dict[str, Any]]]:
    """
    Loads the data from `args` or from disk when the dataloader has not be run previously.

    Args:
        args: The arguments passed to the module, in this case potentially carrying the outputs of the dataloader module.
        dir_experiment: The path to the experiment directory.

    Returns:
        The data, metadata and metatransformer.
    """
    if all(x in args.module_handover for x in ["dataset", "typed", "evaluations"]):
        return (
            args.module_handover["dataset"],
            args.module_handover["typed"],
            args.module_handover["evaluations"],
        )
    else:
        fn_dataset, fn_typed, fn_evaluations = check_input_paths(
            args.dataset, args.typed, args.evaluations, dir_experiment
        )

        with open(dir_experiment / fn_typed, "rb") as f:
            real_data = pickle.load(f)
        with open(dir_experiment / fn_evaluations, "rb") as f:
            evaluations = pickle.load(f)

        return fn_dataset, real_data, evaluations