
VAEs for Synthetic Data Generation

Dominic Danks

1 Executive Summary

This report summarises the work carried out as part of the NHSX PhD internship project entitled “Synthetic
Data Exploration: Variational Autoencoders for Healthcare Data”.

The primary purpose of the project was to investigate the suitability of Variational Autoencoders (VAEs)
as synthetic health data generators within an NHS context. Experiments suggest that the VAE is a viable
candidate for synthetic data generation, with performance at least on par with that of currently utilised
Generative Adversarial Network-based approaches. The project also investigated the notion of differential
privacy with the VAE as a case study, confirming that increasingly stringent differential privacy guarantees
lead to a reduction in synthetic data quality.

Other important contributions of the project include: i) an accompanying open-source code repository
containing code to train a VAE with differential privacy and benchmark synthetic data generation meth-
ods within the Synthetic Data Vault (SDV) software framework; ii) a discussion within this report of the
frameworks and implementation considerations encountered during the project; iii) the inclusion within this
report of explicit, otherwise undocumented details of SDV required to understand its outputs.

2 Introduction

Analysis of real-world healthcare datasets can provide significant insights into diseases and treatments which
can in turn be used to improve patient outcomes. However, the sensitive nature of personal medical data has
historically complicated analysis pathways, with often very few users able to access, and hence analyse, the
data. With the size and granularity of medical datasets continually increasing, it is becoming increasingly
important to devise solutions which allow for the analysis of these datasets in a privacy-preserving way.

One approach to this problem is synthetic data generation, which takes a private dataset as input and
provides a new, synthetic dataset as output. This synthetic dataset should retain the important relationships
and insights present in the original dataset, but should not contain information which could be used to
reidentify the original dataset’s subjects.

The most common form of synthetic data generation techniques, and those which are most generally
applicable, are based around attempting to estimate the underlying distribution from which observations are
drawn and then sampling from that distribution at generation time. The simplest example of such a method
(referred to later in this work as “Independent”) would be to assume independence across variables, model
continuous variables via Gaussian distributions and categorical variables via categorical distributions and
estimate the relevant sufficient statistics empirically. A synthetic dataset could then be generated by sam-
pling independently from these learnt distributions. However, this approach does not capture dependencies
between variables and does not consider privacy. The challenge when performing synthetic data generation
in the healthcare setting is to generate data which accurately matches the distribution of each of the original
variables, but whilst also capturing the dependencies between variables and introducing privacy.

Most modern work aimed at performing this task makes use of Generative Adversarial Networks (GANs,
Goodfellow et al. (2014)). These are a form of generative model which are well-known for their ability to
generate convincing synthetic images (see e.g. Brock et al. (2019)), but are also known for being “black-box”
in their operation and unstable during training (Arjovsky and Bottou, 2017; Arjovsky et al., 2017).

Another form of generative model, which performs many of the same tasks as a GAN, is a Variational
Autoencoder (VAE, Kingma and Welling (2014)). Variants of VAEs have demonstrated similar performance
to GANs on image generation (see e.g. Vahdat and Kautz (2021); Child (2021)) but offer the ability to map
observations onto a learnt latent space and allow for explicit specification of a likelihood model. This makes
VAEs arguably more interpretable than GANs and allows for a greater level of user-definition within the
generative model, which can be useful in healthcare settings where prior knowledge may be present.

1

Although VAEs are a well-regarded generative model, little work has been done to evaluate their suitabil-
ity as a synthetic data generation tool. The ONS Data Science Campus released preliminary work including
a VAE-based model, but in a limited capacity and without privacy considerations (see their online page).
Wan et al. (2017) and Salim (2018) also consider VAE data generation, but without extensive data similarity
metrics and privacy considerations.

This project investigates the potential suitability of VAEs as a synthetic data generation tool in the
context of the NHS. To effectively address this direction, it explicitly focuses on 4 key aspects: quality,
privacy, ease of use, and interpretability. Briefly, quality refers to how faithfully the synthetic data represents
the real data, i.e. to what extent patterns present in the original dataset exist within the synthetic data.
Privacy considers the extent to which the synthetic data retains sensitive aspects of the original dataset.
Ease of use considers how readily a typical NHS user could progress from introduction to the approach and
software to generating synthetic data for their use case. Finally, interpretability refers to how easy it is to
understand why the model’s results are as they are and to edit model design accordingly.

Section 3 details work which has been carried out in the area of synthetic data generation and is relevant
to this project’s scope and NHS context. Section 4 provides the necessary background information to
understand the VAE approach implemented. Section 5 provides a detailed narrative of the implementation
process, including decisions to use certain frameworks, potential alternatives and notes to be aware of when
working with the codebase of this project and related frameworks. Section 6 details various experiments to
evaluate the VAE-based method alongside other alternatives. Section 7 discusses the suitability of the VAE-
based approach in light of the implementation aspects and observed results, as well as discussing natural
continuation directions.

3 Related Work

This section presents work relevant to the project’s investigation. It particularly focuses on methods which
are compared against the VAE-based approach in the experiments of section (Section 6).

3.1 Copula-Based Generation

A d-dimensional copula is a joint cumulative distribution function over the d-dimensional hypercube [0, 1]d

with uniform marginals. The utility of a copula is derived from the idea that a multivariate distribution can
be decomposed into its marginal distributions and its correlation structure, the latter of which is described
by a copula. This idea is formalised by Sklar’s theorem, which states that a multivariate CDF, F , can be
written in terms of its marginal CDFs {Fi} and a copula C as

F (x1, x2, . . . , xd) = C(F1(x1), F2(x2), . . . , Fd(xd)).

This in turn implies that an x sample can be generated by first sampling c from the copula distribution and
then setting xi = F−1i (ci).

In the context of synthetic data generation, one can specify a probability distribution in terms of a
set of marginals and a copula, both with learnable parameters. These parameters can then be learnt via
e.g. maximum likelihood estimation with respect to the real data, thus providing a distribution from which
samples are drawn to obtain the synthetic dataset.

An especially common and useful form of copula is the Gaussian copula, which defines its CDF in terms
of Gaussian-based functions (see e.g. Martin Haugh’s Introduction to Copulas for details) and is easily
sampled from. A Gaussian copula model is one of the models evaluated in Section 6.

3.2 CTGAN

Conditional Tabular Generative Adversarial Network (CTGAN) is a method proposed in Xu et al. (2019)
to generate synthetic tabular data. At its heart is a GAN, the generator of which can be used to generate
synthetic data after training on real data. CTGAN is the prevailing choice of GAN model within the
Synthetic Data Vault (SDV) framework and is evaluated in Section 6.

2

https://datasciencecampus.ons.gov.uk/projects/synthetic-data-for-public-good/
http://www.columbia.edu/~mh2078/QRM/Copulas.pdf

3.3 CopulaGAN

CopulaGAN is an adaptation of CTGAN which adds an additional transform of the input data before passing
it to the GAN model, in particular transforming it to a distribution close to a standard normal. This is done
by passing each variable through an estimate of its marginal CDF and then applying the inverse CDF of a
standard normal. This can be seen as a more refined version of the typical standardisation and normalisation
process within which one subtracts the mean and divides by the standard deviation. The effect of this step
on generator performance can be seen by inspecting CTGAN vs CopulaGAN performance in the experiments
section (Section 6).

3.4 ONS & NHS Digital

In 2019, the ONS Data Science Campus released preliminary work on synthetic data generation in an online
page. That project shared similar motivations to this project but only lightly considered VAEs, did not
consider categorical variables and did not include privacy as a consideration. More recently, in 2021, a team
from the University of Warwick and NHS Digital published a more detailed piece of work (Arvanitis et al.,
2021), however this also focused on GANs and did not explicitly consider privacy.

3.5 PATE

The two prevailing ways to introduce differential privacy into a synthetic data generation model during
training are: i) DP-SGD (utilised in this work and discussed in Section 4) and ii) Private Aggregation
of Teacher Ensembles (PATE) (Papernot et al., 2017). PATE involves the training of multiple “teacher”
models, each trained on a separate partition of the dataset. A “student” model is then trained using noised
outputs of the teacher models. This student model is the final output of the training procedure and has a
calculable differential privacy budget. The PATE procedure was applied to a GAN by Yoon et al. (2019b)
of the van der Schaar group. The group has also published work which introduces privacy to a GAN via an
identifiability loss during training (Yoon et al., 2020) and also work considering time-series generation using
GANs (Yoon et al., 2019a).

The benefit of DP-SGD over PATE is its conceptual and implementational simplicity. DP-SGD can be
readily included in a PyTorch model via the Opacus framework (see Section 5.3). In contrast, PATE requires
fundamental changes to the training procedure, with data partitioning and multiple parallel models required.
We therefore prioritise DP-SGD in this work. A valid future direction could be to investigate the application
of PATE to VAE training, comparing and contrasting it to the DP-SGD approach we use.

4 Background

This section presents in more detail the fundamental concepts relevant to our privacy-aware VAE-based
approach.

4.1 Variational Autoencoders

At the heart of the Variational Autoencoder (VAE) framework is the idea that the variation within observed
(potentially high-dimensional) data x can typically be captured by a low-dimensional latent variable z and
an appropriate mapping between the latent space, in which z exists, and the data space, in which x exists.
More formally, the VAE posits the generative model

zi ∼ p(zi), i = 1, . . . , n

xi|zi ∼ pθ̃(xi|zi), (1)

where zi ∈ Rp is the latent variable corresponding to the i-th data point xi ∈ Rd in the dataset X =
{xi}i=1,...,N .

It is typical to place a standard normal prior on z, i.e. z ∼ N (0, I). Meanwhile, the mapping from z
space to x space is provided by the conditional likelihood pθ̃(x|z). A neural network (NN) referred to as the

3

https://datasciencecampus.ons.gov.uk/projects/synthetic-data-for-public-good/
https://datasciencecampus.ons.gov.uk/projects/synthetic-data-for-public-good/

decoder is used to compute this quantity. Typically the NN decoder, denoted fθ, is used to parameterise
the mean such that E [x|z] = fθ(z). Any additional parameters in the conditional likelihood (e.g. variance
for a Gaussian) are treated as constant across samples and learnt. For example, in the case of a Gaussian

conditional likelihood, pθ̃(xj |z) = N
(
xj |f (j)θ (z), σ2

j

)
, with {σ2

j } learnable, j denoting output dimension, θ

representing neural network parameters and θ̃ =
(
θ, {σ2

j }
)
.

Given data, the learning problem is to infer the values of parameters θ̃ =
(
θ, {σ2

j }
)

most consistent with
the observed data. The most immediate way to attempt this is maximum likelihood inference, that is to
attempt to maximise the overall log-likelihood marginalised over z, i.e.

log pθ̃(x) = log

∫
pθ̃(x|z)p(z) dz . (2)

This is generally intractable and cannot be optimised directly. To make progress, a distribution q(z) is
introduced via

log pθ̃(x) = log

∫
pθ̃(x|z)p(z)

q(z)
q(z) dz .

Applying Jensen’s inequality to the above yields

log pθ̃(x) ≥
∫
q(z) log

pθ̃(x|z)p(z)

q(z)
dz .

The right hand side of this equation is referred to as the Evidence Lower Bound, or ELBO, and can be
rewritten in a number of ways. The two most useful ways when considering VAEs are

ELBO(θ̃, q) = E
z∼q(z)

[
log pθ̃(x|z)

]
−KL [q(z)‖p(z)] (3)

= log pθ̃(x)−KL
[
q(z)‖pθ̃(z|x)

]
. (4)

The second of these, i.e. (4), implies that the ELBO is tight to the log-likelihood if and only if q(z) = pθ̃(z|x),

i.e. if q(z) matches the true posterior. Therefore, one could imagine optimising ELBO(θ̃, q) by alternating
two steps: i) fix θ̃, compute the true posterior and set q(z) to it; ii) maximise (3) w.r.t. θ̃ with q(z) fixed.
This algorithm is exactly Expectation Maximisation (Dempster et al., 1977), and is applicable in simple
cases (e.g. a linear decoder, which is equivalent to Factor Analysis), however in general it is not possible to
compute the posterior, i.e. to perform step i).

One way to proceed, and the approach taken in the VAE framework, is to accept that the true posterior
cannot be computed and instead model q(z) as a member of a family of distributions (e.g. Gaussian)
with parameters (e.g. mean and variance) given by a mapping parameterised by φ, so that q(z) becomes
qφ(z|x). This is referred to as amortised variational inference, and qφ(z|x) is referred to as the variational
posterior. Specifically, in the VAE framework, a NN mapping, referred to as the encoder, is used to map
from an observation x to parameters µ,σ2 of the variational posterior qφ(zj |x) = N (zj ;µj , σ

2
j) (this is

for a Gaussian variational posterior, but other distribution families can be utilised in a similar way). By
parameterising q(z) in this way, the ELBO becomes a function of just decoder parameters θ̃ and encoder
parameters φ, such that the overall VAE training objective is to minimise

−ELBO(θ̃, φ;X) =−
N∑
i=1

E
zi∼qφ(zi|xi)

[
log pθ̃(xi|zi)

]
+

N∑
i=1

KL [qφ(zi|xi)‖p(zi)] , (5)

which can be performed using standard gradient descent-based methods, e.g. Adam (Kingma and Ba, 2017)
or RMSProp. In the experiments of this report, Adam is used. Figure 1 provides a pictorial representation
of the VAE. A reconstruction of a data point x can be obtained by following the diagram from far left to
far right. Specifically, x is fed to the encoder, which outputs the parameters of the variational posterior
distribution. This posterior is then sampled from to obtain the associated z value. z is then passed through

4

https://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf

NN encoder

Input Posterior
parameters Latent variable

NN decoder

Reconstruction

Figure 1: Schematic representation of a Variational Autoencoder.

the decoder to obtain the sufficient statistics of p(x|z) which can then be sampled from to obtain x̂. While
useful to understand a model’s behaviour, this process is not what is used to generate synthetic data with
a VAE. Instead, synthetic data is generated by simply sampling according to the generative model (1) with
the trained decoder. This is the same as the process above, but replacing the encoder output with a sample
from the prior. This explanation highlights the encoder’s primary purpose as a training tool. Once training
is complete, unless detailed internal model behaviour is to be investigated, the encoder can be discarded and
synthetic data still generated.

4.2 Differential Privacy

An immediate challenge when attempting to include privacy within machine learning models is to precisely
define and evaluate the privacy of an algorithm. Differential Privacy (DP) addresses this challenge by
providing a formal privacy metric using the intuition that if the model preserves privacy, then the removal
of any single individual should not significantly affect the output of the model.

More formally, a randomised algorithm M is defined to be (ε, δ) differentially private if

P (M(D) ∈ S) ≤ eεP (M(D′) ∈ S) + δ,

where D is the dataset D′ with any single entry removed and S is any subset of the image of M, with P
being the probability over the randomised aspect of M. Note that if M is (0, 0) differentially private, then
the model is unaffected by the presence of an additional datapoint and is hence completely private. However,
such a model would be unlikely to be useful. In general, a tradeoff must be made between complete privacy
and optimal performance. Differential privacy (if it can be computed for the given procedure) allows the
amount of privacy sacrificed during training to be quantified.

4.3 DP-SGD

Gradient descent (GD) is an iterative optimisation procedure which, at each iteration, performs a parameter
update of the form

θ ←− θ − α∇L(θ),

where ∇ denotes the gradient with respect to θ, α is the step size (also referred to as the learning rate) and
L is the loss function.

For convex optimisation objectives, it can be shown that (for sufficiently small α) gradient descent will
converge to the global minimum, whilst in general it will tend to find local minima. Variants of gradient
descent optimisation (e.g. Adam (Kingma and Ba, 2017), RMSProp) are currently the standard choice for
optimisation of NN-based models (we use Adam).

Standard GD methods do not consider privacy, they focus only on decreasing the model’s loss. DP-SGD
attempts to retain the basic intuition and functionality of standard GD whilst introducing and quantifying
privacy. It does this by editing the updates involved in GD in two ways: 1) it clips the gradients corresponding
to any particular example (intuitively this can be thought of as preventing the model overfitting to outliers,
hence sacrificing their privacy) and 2) it adds noise to the gradients. Its formal algorithmic definition is
given in in Algorithm 1 in Figure 2.

5

https://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf

Figure 2: The DP-SGD algorithm. Credit: Abadi et al. (2016).

If Algorithm 1 is followed, then the resulting model is (ε, δ) differentially private with an (ε, δ) which
can be calculated via a “moments accountant”, which is included within an Opacus PrivacyEngine object.
Any model which is trained via gradient descent can therefore be made differentially private by editing the
training process in this way via use of Opacus (see Section 5.3).

5 Implementation

5.1 PyTorch vs. Alternatives

Typical approaches for training the models of interest in this project (e.g. VAEs, GANs) require the use
of automatic differentiation and gradient-based optimisation. Various machine learning libraries offer this
functionality in numerous languages, and the project could in principle have been carried out using any of
these (e.g. TensorFlow in C++, TensorFlow in Python, Flux in Julia). PyTorch was chosen due to i) its
ease of use, ii) its didactic code structure and iii) the large number of PyTorch-aware open-source libraries
relevant to this project (in particular the Synthetic Data Vault discussed below).

5.2 Synthetic Data Vault (SDV)

Synthetic Data Vault (SDV) is an open-source project which provides synthetic data generation and eval-
uation functionality. In particular, it allows for numerous modern methods (e.g. Copulas, CTGAN) to be
trained on a particular dataset and their performance compared, using a variety of metrics, with little code
overhead. To our knowledge, it is the most advanced and thorough synthetic data framework in Python.
Furthermore it is built using PyTorch, leading to particular compatibility with our VAE-based approach.
We use various models and metrics from SDV in Section 6.

5.3 Opacus

Our VAE-based approach requires the use of DP-SGD and associated privacy budget calculations which
are not implemented within standard PyTorch. Opacus provides this functionality in a natural way. In
particular, a PrivacyEngine is attached to the optimiser used in a standard PyTorch model, after which
the model can be trained as with standard PyTorch. This PrivacyEngine covertly i) edits the gradients
used to update the parameters by clipping and noising as in DP-SGD and ii) computes the privacy budget
associated with the learning process, providing an (ε, δ) DP value for the trained model.

6

https://sdv.dev/
https://github.com/pytorch/opacus

5.4 Points of Note

It should be noted that SDV is still in the early stages of development, leading to a lack of documentation on
some functions and the need for additional user-side code to complete the desired functionality. In addition,
Opacus is largely tailored to and demonstrated on standard supervised learning neural network models, with
some additions needed to enable private training of a VAE-based approach. This section contains some of
the steps required to perform the experiments detailed below and aspects which should be kept in mind
when working with our codebase and Opacus and SDV in general.

5.4.1 Opacus Layer Support

At the time of writing, Opacus only supports PyTorch modules with either no learnable parameters, param-
eters whose values are frozen (i.e. with require grad=False) or made up of elements which are con-
tained within the opacus.SUPPORTED LAYERS dictionary. Entries include most standard layers such as
torch.nn.Linear and torch.nn.Conv2d. However, recall from Section 4.1 that there are 3 sets of parame-
ters for the VAE: the decoder parameters θ, the encoder parameters φ and the data space noise parameters
{σ2

j }. The former two can be immediately captured within the Opacus framework as all network parame-

ters are within supported layers. However, the {σ2
j } parameters are most naturally included using a basic

torch.nn.Parameter() specification, which is not supported by Opacus. To circumvent this problem we
use the idea that if the weights of a linear layer are fixed to zero, then Wx + b = b. Specifically, we define
{log σj} as the output of a linear layer with W = 0 and allow the bias b to play the role of what would
usually be specified via torch.nn.Parameter(). This edit allows the model to be readily compatible with
Opacus while retaining the {σ2

j } parameters which are integral to the VAE model.

5.4.2 Opacus Per-Example Gradient Calculation

DP-SGD requires the computation of the contribution of each datapoint to the overall gradient of the
loss with respect to learnable parameters (gt(xi) within Algorithm 1 of Figure 2). This is not a natural
operation in PyTorch as most models require the gradient only once it has been aggregated over a batch
of observations. As a result, Opacus relies on a relatively specialised PyTorch feature known as a hook.
Running our VAE-based approach in Opacus in its standard form results in a Warning that the use of
PyTorch’s register backward hook does not appropriately capture all of the gradients required in our
model and that PyTorch’s register full backward hook should be used instead. We follow this advice
and therefore use a local version of Opacus with this edit in our codebase.

6 Experiments

6.1 Metrics

SDV provides a variety of metrics which allow quantification of synthetic data quality and privacy. More
precisely, SDV provides three types of metrics, namely detection metrics, distribution metrics, and privacy
metrics, detailed in turn below.

6.1.1 Detection Metrics

Detection metrics aim to communicate how easily synthetic data points can be distinguished from real data
points. SDV attempts to quantify this by training either a logistic regression model (denoted as Logistic
in tables) or support vector classifier (denoted as SVC in tables) to perform this task and reports an Area
Under ROC Curve (AUC)-based metric with a value in [0, 1]. This metric takes value 1 for AUC ≤ 0.5 and
2(1−AUC) otherwise. If it is straightforward to distinguish the two data types, the AUC will be close to 1,
resulting in an SDV metric output of close to 0. If the trained model is unable to distinguish the two types
of data, the AUC will be close to 0.5, making the SDV metric output close to 1. Therefore, when evaluating
synthetic data generators on detection, we desire generators with metric values closer to 1 rather than those
with metric values closer to 0.

7

6.1.2 Distribution Metrics

Distribution metrics aim to quantify how similar the empirical distributions of the real and synthetic data
are.

The GMLL (Gaussian Mixture Log-Likelihood) metric reports the log-likelihood of the synthetic data
under a Gaussian Mixture Model fitted to the real data. The idea here is that if the real and synthetic
distributions are similar, the likelihood of obtaining the synthetic data from the learnt model will be high,
and vice versa. Hence, a higher performing synthetic data generator should exhibit a higher GMLL metric
than a less well-performing generator.

The CS (Chi-Squared) metric reports the p-value (hence in [0, 1]) associated with performing a Chi-
Squared test on the categorical columns of the synthetic data under the null hypothesis that that the
synthetic data is drawn from the same distribution as the real data. As the p-value communicates the
probability of obtaining data “at least as different” to the real data as the synthetic data, a large value is
what is desired. This essentially means that there is insufficient evidence to suggest that the null hypothesis
that the two distributions are the same should be rejected.

Similar to the CS metric, the KS (Kolmogorov-Smirnov) metric reports the p-value (hence in [0, 1])
associated with performing a Kolmogorov-Smirnov test on the continuous columns of the synthetic data
under the null hypothesis that that the synthetic data is drawn from the same distribution as the real data.
By the same arguments as for CS, a larger value communicates greater distributional similarity.

Cont KL (Continuous Kullback-Leibler) reports

1

1 + KL
,

where KL is the Kullback-Leibler divergence between the synthetic and real data distributions over the
continuous variables. This metric can therefore take values between zero and one with values becoming more
desirable as they approach one. Disc KL (Discrete Kullback-Leibler) computes the corresponding quantity
for the categorical variables.

6.1.3 Privacy Metrics

SDV’s privacy metrics aim to empirically estimate the extent to which the privacy of sensitive variables within
the original dataset is retained in the synthetic dataset. More specifically, they quantify how accurately the
value of a sensitive variable within the real data can be predicted by a model trained on the synthetic data.
For example, if the sdv.metrics.tabular.NumericalMLP method is chosen, a Multilayer Perceptron (i.e.
standard feedforward neural network) is trained using the synthetic data to predict the numerical sensitive
attribute (e.g. age) from a number of “key” attributes (e.g. medical biomarkers). Its ability to compute the
sensitive attribute given the key attributes is then tested on the real data and a score computed. In the case
of categorical sensitive variables, this is the probability of an incorrect prediction. In the case of continuous
sensitive variables, it is the L2 norm between CDF(real) and CDF(predicted), where CDF is the cumulative
distribution function of the sensitive variable fitted to the real data. Therefore, the privacy metrics also lie
in [0, 1], with a larger value communicating greater privacy.

6.2 SUPPORT

SUPPORT (Knaus et al., 1995) is a dataset derived from a prognostic study of seriously ill patients contain-
ing contains 8873 entries with 14 covariates (age, sex, race, number of comorbidities, presence of diabetes,
presence of dementia, presence of cancer, mean arterial blood pressure, heart rate, respiration rate, tem-
perature, white blood cell count, serum sodium, and serum creatinine) and associated survival times (or
censorship times). The dataset therefore contains a desirable mix of continuous and categorical variables.
Furthermore, the dataset is widely used as a benchmark dataset in the context of survival modelling. For
example, Katzman et al. (2018) use this dataset in their analysis and freely release the preprocessed version
within the PyCox framework, which we make use of.

8

6.3 Results

6.3.1 Models

We evaluate the performance of the VAE approach alongside 5 alternative methods currently available,
namely Gaussian Copula, CTGAN, CopulaGAN, TVAE and Independent. Gaussian Copula, CTGAN and
CopulaGAN are as described in Section 3. TVAE refers to SDV’s own implementation of a VAE following
the description in Xu et al. (2019). Independent refers to our baseline, namely a model which assumes inde-
pendence across variables, models continuous variables via Gaussian distributions and categorical variables
via categorical distributions, and estimates the relevant sufficient statistics empirically. Evaluating this set
of models provides context to the performance of the VAE with respect to both basic (e.g. Independent)
and complex (e.g. CTGAN) approaches.

6.3.2 Quality and Privacy

The first question to address via experiments is how well a standard VAE performs in a quality and privacy
sense as a synthetic data generator relative to the alternative methods. The second question to address is
how the incorporation of differential privacy affects synthetic data quality and privacy as measured by other
privacy metrics. This section addresses each of these questions in turn.

The first question can be addressed by attempting synthetic data generation from the SUPPORT dataset
using each method and comparing overall performance using the metrics defined previously. Table 1 shows
the detection metrics (see Section 6.1.1) for each of the methods considered. The first point to note is that in
each case the AUC-based metric value associated with the SVC model is smaller than that associated with the
Logistic model, i.e. the SVC is more successful at distinguishing between real and synthetic data. This is to
be expected due to the greater expressivity of support vector classification relative to Logistic Regression and
is reassuring to observe. It should also be noted that the SVC metric is therefore of the greatest importance
as adversarial attacks will typically use highly expressive models (such as SVC), not logistic regression. The
table therefore suggests that the VAE produces data which is the most difficult to distinguish from real
observations, with the two GAN-based approaches achieving similar results. Predictably, the independent
baseline performed poorly when exposed to the powerful SVC classifier, however performed surprisingly
well with respect to the Logistic classifier, stressing the importance of evaluating detection using a suitably
powerful model. A final Table 1 result to highlight is the relatively poor performance of TVAE relative
to VAE. The source of this is not entirely clear, hence we only utilise SDV’s TVAE implementation when
generating its metric entries in Tables 1–3. For other VAE experimentation and evaluation we use our own
implementation, represented as VAE in Tables 1–3.

Table 2 shows the distribution-based metrics (see Section 6.1.2) obtained by each of the generators.
The first point of note with respect to this table is that each method actually performs relatively similarly
according to these metrics. As will be seen in visualisations later in this section, this is not the case when
evaluating the synthetic data qualitatively. For example, an inspection of this table would suggest that
Independent is particularly desirable, however, we know by definition that it is unable to capture correlations.

Finally, Table 3 shows the privacy-based metrics (see Section 6.1.3). We use age as the sensitive attribute
and all other variables as key attributes. Here we see that the VAE and independent models typically
provide the greatest privacy according to these metrics. The large privacy metric values associated with the
Independent method is perhaps unsurprising as there is no correlation structure within the data, reducing
the amount of information able to be drawn upon to regress from the key to the sensitive features. The
large values associated with the VAE are encouraging, as these suggest that the VAE, a model capable of
capturing correlations, also demonstrates competitive privacy metrics.

Tables 1–3 provide quantitative metrics on the various aspects of similarity, however it is also of interest
to present the synthetic vs real data comparison visually. A good choice for such a visual comparison is the
Pearson correlation matrix plotted as a heatmap. In particular, it is of interest to visualise i) the real data’s
correlations, ii) the synthetic data’s correlations and iii) the difference between them. This is shown for a
cross section of the models in Figure 3, with i), ii) and iii) corresponding to the left, middle and right columns
respectively. Also shown (in each of the right column plot titles) are two additional metrics for each model,
namely the “Gower Distance” and “Correlation RMSE”. The Gower Distance (Gower, 1971) quantifies the
dissimilarity between two datasets, with a larger value communicating greater dissimilarity. Meanwhile,

9

Figure 3: Real vs Synthetic Data Correlation Structures. A visual comparison of within-dataset
correlations for real data and synthetic data generated from various models.

10

Correlation RMSE is the root mean square of the difference between the two correlation matrices, hence a
larger value communicates greater disagreement between the real and synthetic data correlations.

Inspection of Figure 3 reveals that, as expected, Independent has the greatest Correlation RMSE, whilst
Gaussian Copula has the smallest, with VAE demonstrating similar performance. Similarly, VAE exhibits the
smallest Gower Distance, with Gaussian Copula performing comparably. Visually, it is also clear that whilst
the three non-independent methods capture the important central correlation structure, greater similarity is
exhibited by the Gaussian Copula and VAE models.

We now turn to the second key question laid out at the beginning of the section, namely how the
introduction of differential privacy changes the behaviour of the VAE-based model. Of particular interest
is how the metrics and visualisations evaluated in the previous question’s analysis change as a function of
differential privacy budget. We follow the convention of similar work (e.g. Abadi et al. (2016)) and fix δ (in
this case to 10−3) while allowing ε to vary. Tables 4–6 show the effect of varying ε on the key evaluation
metrics. The first thing to note is that Table 4 behaves much as expected in that the SVC metric tends to
increase with increasing ε up to a maximum at ε =∞, i.e. using standard gradient descent rather than DP-
SGD. Table 5’s distribution metrics largely follows this pattern also, i.e. they exhibit less desirable metric
values at low ε, however with exceptions, e.g. a strong performance by the model with ε ≈ 5 in this case.
Of particular interest is the effect of changing ε on the value of the privacy metrics. One would be expect
that an ε decrease would lead to an improvement, and hence increase, in the privacy metric values. Table 6
does support this idea to a degree, for example at ε = ∞ the privacy metrics are generally at their lowest.
However it also exhibits unexpected behaviour, in particular that the metrics associated with ε ≈ 1 and ε ≈ 2
(the lowest εs considered) are not the largest, even though they generally exhibit the worst performance in
Tables 4 & 5. This result could arise due to genuinely low adversarial robustness at low ε, however this is
inconsistent with the motivation of DP, and a more likely alternative is that the SDV privacy metrics may
not always quantify privacy appropriately.

Further insight is again provided by visualising the correlations within the real and synthetic data and
comparing Gower Distance and Correlation RMSE values (see Figure 4). From this figure it can be seen
that as ε is decreased from 10 to 1 the Correlation RMSE is largely unchanged but the synthetic correlations
take on a more “washed out” appearance, with a larger number of entries exhibiting a small erroneous value.
Meanwhile, the Gower Distance increases monotonically with each ε decrease.

6.3.3 Ease of Use and Interpretability

In the context of data generation within the NHS, it is also important to consider i) how readily the VAE-
based tool could be utilised by users with varied familiarity with coding and ii) how interpretable and/or
understandable the model and its behaviours are. This section considers these aspects in turn.

Given that any synthetic data tool adopted by the NHS would be of interest to users with a wide variety
of programming familiarity, a conscious effort was made to run the aforementioned experiments in their most
natural way, as would be done by a fresh user. In particular, where possible SDV algorithms were run with
default settings, and the same simple feedforward network was used within the VAE implementation at all
times. Consequently, the results presented in this report are representative of what would be obtained by
the “typical” user, rather than one with unlimited time and coding experience. Indeed, in its current form,
a user with a basic knowledge of Python and PyTorch could generate synthetic data of their own using any
of the methods provided here with relative ease (generally by editing only a few lines of code, the location of
which is highlighted within the relevant files). We recognise however that this still restricts access to those
confident enough to use GitHub and run Python scripts. As synthetic data tools such as this move closer to
the wider NHS community it will be important to consider in greater detail the default user interface and
whether a GUI-based approach, potentially with AutoML aspects for additional methodological assistance,
is a more viable option for the typical user than code-based APIs.

Advanced users may like to understand model performance and behaviour beyond basic metrics and
visualisations as well as edit a model’s default setup. Our VAE approach is particularly appealing is this
respect. Firstly, it is easily customisable by an experienced Python user with regard to aspects such as
network architecture, optimizer choice and generative model design. Whilst it is in principle possible to do
the same with the alternative methods offered via the SDV framework, this requires editing the source code
of the framework, adding an additional layer of complexity. In addition, note that compared to a GAN the

11

Figure 4: Real vs Synthetic Data Correlation Structures. A visual comparison of within-dataset
correlations for real data and VAE-generated synthetic data with varied differential privacy budgets.

12

Table 1: SUPPORT: Detection metrics. Quantification of the difficulty of distinguishing synthetic and
real data entries. Larger values mean harder to distinguish. Metrics are given as mean±std over 10 randomly
seeded runs.

Method Logistic SVC

Gaussian Copula 0.4457± 0.0049 0.2687± 0.0043

CTGAN 0.5507± 0.0885 0.3464± 0.0466

CopulaGAN 0.5432± 0.0887 0.3474± 0.0436

TVAE 0.3023± 0.0450 0.0798± 0.0125

VAE 0.9282± 0.0280 0.3555± 0.0368

Independent 0.9992± 0.0012 0.0484± 0.0081

Table 2: SUPPORT: Distribution metrics. Quantification of the distributional similarity of synthetic
and real datasets. Larger values mean greater similarity. Metrics are given as mean± std over 10 randomly
seeded runs.

Method GMLL CS KS Cont KL Disc KL

Gaussian Copula −34.36± 0.03 0.9407± 0.0016 0.9207± 0.0016 0.8987± 0.0015 0.7657± 0.0011

CTGAN −34.18± 0.89 0.8996± 0.0235 0.8571± 0.0226 0.8864± 0.0358 0.9250± 0.0135

CopulaGAN −33.78± 0.41 0.9005± 0.0222 0.8627± 0.0242 0.8998± 0.0170 0.9231± 0.0219

TVAE −30.91± 0.19 0.8915± 0.0152 0.8314± 0.0169 0.8254± 0.0241 0.8408± 0.0236

VAE −36.42± 0.09 0.9883± 0.005 0.8820± 0.0041 0.8693± 0.0059 0.9817± 0.0011

Independent −33.94± 0.17 0.9962± 0.0017 0.9592± 0.0021 0.8444± 0.0053 0.9809± 0.0009

VAE has two additional aspects which can aid model understanding, namely i) an encoder which is able to
associate each data point with a low-dimensional embedding and ii) an explicit generative likelihood model.
The former can be used to understand latent factors within the data, whilst the latter can be used to enforce
or encourage behaviour within the output distribution. In contrast, a GAN’s discriminator does not provide
i) as its only purpose is to discriminate between genuine and generated data. Moreover, a GAN’s generator
does not provide ii) as it does not have an associated likelihood due to it only ever having to be sampled
from, not evaluated. We do not explicitly visualise the embeddings or significantly edit the generative model
in this report, however this would be valuable future work.

7 Discussion

Throughout the report it has been clear that the VAE is a viable synthetic health data generator. Its
likelihood-based nature and incorporation of a deep neural network allows for interpretable modelling of
varied and complex data distributions, and its performance in Tables 1– 3 and Figure 3 compares favourably
with alternative methods. Additionally it can be easily adapted to accommodate (ε, δ) differential privacy as
demonstrated in the accompanying code repository. However, whilst differential privacy can be introduced
easily, it was seen that restrictive privacy budgets led to reduced synthetic dataset quality. Furthermore, it
was seen that the measure of privacy provided by DP did not always correlate directly with the observed level
of privacy according to SDV’s privacy metrics. This observation motivates further work. One natural follow-
on question is whether the performance decrease associated with lower εs is worthwhile, and by extension
whether DP is necessary at all or whether the noise inherent to a variational encoder in the z and x sampling
steps is enough to disguise the real data. To answer this satisfactorily would require the development and

13

Table 3: SUPPORT: Privacy metrics. Quantification of the privacy of the synthetic datasets produced
by different methods. Larger values mean greater privacy. Metrics are given as mean± std over 10 randomly
seeded runs.

Method LR MLP SVR

Gaussian Copula 0.0736± 0.0245 0.0845± 0.0303 0.0749± 0.0248

CTGAN 0.0803± 0.0276 0.0911± 0.0324 0.0841± 0.0291

CopulaGAN 0.0836± 0.0288 0.0877± 0.0307 0.0869± 0.0299

TVAE 0.0841± 0.0291 0.0917± 0.0320 0.0880± 0.0298

VAE 0.0828± 0.0013 0.1078± 0.0430 0.0987± 0.0373

Independent 0.0882± 0.0351 0.1077± 0.0430 0.0987± 0.0372

Table 4: SUPPORT: Detection metrics with a differentially private VAE. Quantification of the
effect of privacy budget on detection metrics for the VAE. Larger values mean harder to distinguish.

ε Logistic SVC

0.9994 0.4957 0.1453

2.0179 0.7567 0.1875

5.1455 0.6780 0.2561

9.9502 0.7092 0.2511

21.3812 0.7749 0.2742

∞ 0.9184 0.4018

Table 5: SUPPORT: Distribution metrics with a differentially private VAE. Quantification of the
effect of privacy budget on distribution metrics for the VAE. Larger values mean greater similarity.

ε GMLL CS KS Cont KL Disc KL

0.9994 −36.12 0.7845 0.8888 0.8416 0.7344

2.0179 −36.14 0.8184 0.8914 0.8422 0.8139

5.1455 −35.17 0.8333 0.8979 0.8556 0.8252

9.9502 −35.21 0.8349 0.8942 0.8534 0.8333

21.3812 −35.42 0.8598 0.8933 0.8568 0.8703

∞ −36.39 0.9851 0.8909 0.8726 0.9806

application of a range of more advanced adversarial attacks and metrics than those offered by SDV and the
standard VAE to resist these effectively.

Another natural immediate continuation of the work presented here is to attempt to incorporate (ε, δ) DP
into models other than the VAE and compare their behaviour as a function of ε with the aim of elucidating the
extent to which each model is able to resist quality loss as ε is lowered. This would be done by accessing the
internal PyTorch optimizers associated with the SDV fit methods and attaching Opacus PrivacyEngines.
A linked question which could be investigated is whether the use of PATE, rather than DP-SGD, allows for
greater performance retention as the privacy budget is tightened. It could also be beneficial to more explicitly
demonstrate the interpretable aspects of a VAE, namely latent factor identification and generative model

14

Table 6: SUPPORT: Privacy metrics with a differentially private VAE. Quantification of the effect
of privacy budget on privacy metrics for the VAE. Larger values mean greater privacy.

ε LR MLP SVR

0.9994 0.0826 0.0858 0.0817

2.0179 0.0810 0.0825 0.0817

5.1455 0.0863 0.0877 0.0825

9.9502 0.0853 0.0869 0.0812

21.3812 0.0829 0.1018 0.0805

∞ 0.0801 0.0826 0.0804

specification, whilst comparing to the GAN equivalent, that is probing GAN behaviour via the generator’s
decision boundary and discriminator’s generative samples. Finally, it would also be informative to apply all
methods to additional datasets with a variety of data types, data heterogeneity and missingness rates, with
MIMIC-III an appropriate first choice.

References

Martin Abadi, Andy Chu, Ian Goodfellow, H. Brendan McMahan, Ilya Mironov, Kunal Talwar, and Li Zhang.
2016. Deep learning with differential privacy. In Proceedings of the 2016 ACM SIGSAC Conference on
Computer and Communications Security, CCS ’16, page 308–318, New York, NY, USA. Association for
Computing Machinery.

Martin Arjovsky and Léon Bottou. 2017. Towards principled methods for training generative adversarial
networks.

Martin Arjovsky, Soumith Chintala, and Léon Bottou. 2017. Wasserstein gan.

Theodoros N. Arvanitis, Sean White, Stuart Harrison, Rupert Chaplin, and George Despotou. 2021. A
method for machine learning generation of realistic synthetic datasets for validating healthcare applica-
tions. medRxiv.

Andrew Brock, Jeff Donahue, and Karen Simonyan. 2019. Large scale gan training for high fidelity natural
image synthesis.

Rewon Child. 2021. Very deep vaes generalize autoregressive models and can outperform them on images.

A. P. Dempster, N. M. Laird, and D. B. Rubin. 1977. Maximum likelihood from incomplete data via the em
algorithm. Journal of the Royal Statistical Society. Series B (Methodological), 39(1):1–38.

Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron
Courville, and Yoshua Bengio. 2014. Generative adversarial networks.

J. C. Gower. 1971. A general coefficient of similarity and some of its properties. Biometrics, 27(4):857–871.

Jared L. Katzman, Uri Shaham, Alexander Cloninger, Jonathan Bates, Tingting Jiang, and Yuval Kluger.
2018. Deepsurv: personalized treatment recommender system using a cox proportional hazards deep neural
network. BMC Medical Research Methodology, 18(1):24.

Diederik P. Kingma and Jimmy Ba. 2017. Adam: A method for stochastic optimization.

Diederik P Kingma and Max Welling. 2014. Auto-encoding variational bayes.

15

https://doi.org/10.1145/2976749.2978318
http://arxiv.org/abs/1701.04862
http://arxiv.org/abs/1701.04862
http://arxiv.org/abs/1701.07875
https://doi.org/10.1101/2021.02.11.21250741
https://doi.org/10.1101/2021.02.11.21250741
https://doi.org/10.1101/2021.02.11.21250741
http://arxiv.org/abs/1809.11096
http://arxiv.org/abs/1809.11096
http://arxiv.org/abs/2011.10650
http://www.jstor.org/stable/2984875
http://www.jstor.org/stable/2984875
http://arxiv.org/abs/1406.2661
http://www.jstor.org/stable/2528823
https://doi.org/10.1186/s12874-018-0482-1
https://doi.org/10.1186/s12874-018-0482-1
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1312.6114

William A. Knaus, Frank E. Harrell, Joanne Lynn, Lee Goldman, Russell S. Phillips, Alfred F. Connors,
Neal V. Dawson, William J. Fulkerson, Robert M. Califf, Norman Desbiens, Peter Layde, Robert K.
Oye, Paul E. Bellamy, Rosemarie B. Hakim, and Douglas P. Wagner. 1995. The support prognostic
model: Objective estimates of survival for seriously ill hospitalized adults. Annals of Internal Medicine,
122(3):191–203.

Nicolas Papernot, Mart́ın Abadi, Úlfar Erlingsson, Ian Goodfellow, and Kunal Talwar. 2017. Semi-supervised
knowledge transfer for deep learning from private training data.

Ally Salim. 2018. Synthetic patient generation: A deep learning approach using variational autoencoders.

Arash Vahdat and Jan Kautz. 2021. Nvae: A deep hierarchical variational autoencoder.

Zhiqiang Wan, Yazhou Zhang, and Haibo He. 2017. Variational autoencoder based synthetic data generation
for imbalanced learning. In 2017 IEEE Symposium Series on Computational Intelligence (SSCI), pages
1–7.

Lei Xu, Maria Skoularidou, Alfredo Cuesta-Infante, and Kalyan Veeramachaneni. 2019. Modeling tabular
data using conditional GAN. CoRR, abs/1907.00503.

Jinsung Yoon, Lydia N. Drumright, and Mihaela van der Schaar. 2020. Anonymization through data synthesis
using generative adversarial networks (ads-gan). IEEE Journal of Biomedical and Health Informatics,
24(8):2378–2388.

Jinsung Yoon, Daniel Jarrett, and Mihaela van der Schaar. 2019a. Time-series generative adversarial net-
works. In Advances in Neural Information Processing Systems, volume 32. Curran Associates, Inc.

Jinsung Yoon, James Jordon, and Mihaela van der Schaar. 2019b. PATE-GAN: Generating synthetic data
with differential privacy guarantees. In International Conference on Learning Representations.

16

https://doi.org/10.7326/0003-4819-122-3-199502010-00007
https://doi.org/10.7326/0003-4819-122-3-199502010-00007
http://arxiv.org/abs/1610.05755
http://arxiv.org/abs/1610.05755
http://arxiv.org/abs/1808.06444
http://arxiv.org/abs/2007.03898
https://doi.org/10.1109/SSCI.2017.8285168
https://doi.org/10.1109/SSCI.2017.8285168
http://arxiv.org/abs/1907.00503
http://arxiv.org/abs/1907.00503
https://doi.org/10.1109/JBHI.2020.2980262
https://doi.org/10.1109/JBHI.2020.2980262
https://proceedings.neurips.cc/paper/2019/file/c9efe5f26cd17ba6216bbe2a7d26d490-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/c9efe5f26cd17ba6216bbe2a7d26d490-Paper.pdf
https://openreview.net/forum?id=S1zk9iRqF7
https://openreview.net/forum?id=S1zk9iRqF7

	Executive Summary
	Introduction
	Related Work
	Copula-Based Generation
	CTGAN
	CopulaGAN
	ONS & NHS Digital
	PATE

	Background
	Variational Autoencoders
	Differential Privacy
	DP-SGD

	Implementation
	PyTorch vs. Alternatives
	Synthetic Data Vault (SDV)
	Opacus
	Points of Note
	Opacus Layer Support
	Opacus Per-Example Gradient Calculation

	Experiments
	Metrics
	Detection Metrics
	Distribution Metrics
	Privacy Metrics

	SUPPORT
	Results
	Models
	Quality and Privacy
	Ease of Use and Interpretability

	Discussion

