Preprocessing
Functions for preprocessing and cleaning extracted data.
add_time_elapsed_to_events(events, starttime, remove_charttime=False)
Adds column 'elapsed' which considers time elapsed since starttime.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
events |
DataFrame
|
Events table. |
required |
starttime |
Datetime
|
Reference start time. |
required |
remove_charttime |
bool
|
Whether to remove charttime column. Defaults to False. |
False
|
Returns:
Type | Description |
---|---|
DataFrame
|
pl.DataFrame: Updated events table. |
Source code in src/utils/preprocessing.py
clean_labevents(labs_data)
Maps non-integer values to None and removes outliers.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
events |
DataFrame
|
Events table. |
required |
Returns:
Type | Description |
---|---|
LazyFrame
|
pl.DataFrame: Cleaned events table. |
Source code in src/utils/preprocessing.py
clean_notes(notes)
Cleans notes data by removing any relevant special characters and extra whitespaces.
Source code in src/utils/preprocessing.py
convert_events_to_timeseries(events)
Converts long-form events to wide-form time-series.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
events |
DataFrame
|
Long-form events. |
required |
Returns:
Type | Description |
---|---|
DataFrame
|
pl.DataFrame: Wide-form time-series of shape (timestamp, features) |
Source code in src/utils/preprocessing.py
encode_categorical_features(ehr_data)
Applies one-hot encoding to categorical features.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
ehr_data |
DataFrame
|
Static EHR dataset. |
required |
Returns:
Type | Description |
---|---|
DataFrame
|
pl.DataFrame: Transformed EHR data. |
Source code in src/utils/preprocessing.py
extract_lookup_fields(ehr_data, lookup_list=None, lookup_output_path='../outputs/reference')
Extract dates and summary fields not suitable for training in a separate dataframe.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
ehr_data |
DataFrame
|
Static EHR dataset. |
required |
Returns:
Type | Description |
---|---|
DataFrame
|
pl.DataFrame: Transformed EHR data. |
Source code in src/utils/preprocessing.py
generate_interval_dataset(ehr_static, ts_data, ehr_regtime, vitals_freq='5h', lab_freq='1h', min_events=None, max_events=None, impute='value', include_dyn_mean=False, no_resample=False, max_elapsed=None, vitals_lkup=None, verbose=True)
Generates a multimodal dataset with set intervals for each event source.
Source code in src/utils/preprocessing.py
generate_train_val_test_set(ehr_data, output_path='../outputs/processed_data', outcome_col='in_hosp_death', output_summary_path='../outputs/exp_data', seed=0, train_ratio=0.8, val_ratio=0.1, test_ratio=0.1, cont_cols=None, nn_cols=None, disp_dict=None, stratify=True, verbose=True)
Create train/val/test split from static EHR dataset and save the patient IDs in separate files.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
ehr_data |
DataFrame
|
Static EHR dataset. |
required |
Returns:
Type | Description |
---|---|
dict
|
pl.DataFrame: Transformed EHR data. |
Source code in src/utils/preprocessing.py
481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 |
|
get_ltc_features(admits_last, diagnoses, ltc_dict_path='../outputs/icd10_codes.json', mm_cutoff=1, cmm_cutoff=3, verbose=True, use_lazy=False)
Generates features for long-term conditions from a diagnoses table and a dictionary of ICD-10 codes.
Source code in src/utils/preprocessing.py
prepare_medication_features(medications, admits_last, top_n=50, use_lazy=False)
Generates count features for drug-level medication history.
Source code in src/utils/preprocessing.py
253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 |
|
preproc_icd_module(diagnoses, icd_map_path='../config/icd9to10.txt', map_code_colname='diagnosis_code', only_icd10=True, ltc_dict_path='../outputs/icd10_codes.json', verbose=True, use_lazy=False)
Takes an module dataset with ICD codes and puts it in long_format, optionally mapping ICD-codes by a mapping table path. Uses custom ICD-10 mapping to generate fields for physical and mental long-term conditions.
Source code in src/utils/preprocessing.py
24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 |
|
process_text_to_embeddings(notes)
Generates dictionary containing embeddings from Bio+Discharge ClinicalBERT (mean vector). https://huggingface.co/emilyalsentzer/Bio_Discharge_Summary_BERT
Parameters:
Name | Type | Description | Default |
---|---|---|---|
notes |
DataFrame
|
Dataframe containing notes data. |
required |
Returns:
Name | Type | Description |
---|---|---|
dict |
dict
|
Dictionary containing subject_id as keys and average word embeddings as values. |
Source code in src/utils/preprocessing.py
remove_correlated_features(ehr_data, feats_to_save=None, threshold=0.9, method='pearson', verbose=True)
Drop highly correlated features from static EHR dataset, while specifying features to explicitly save for training.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
ehr_data |
DataFrame
|
Static EHR dataset. |
required |
Returns:
Type | Description |
---|---|
DataFrame
|
pl.DataFrame: Transformed EHR data. |
Source code in src/utils/preprocessing.py
transform_sensitive_attributes(ed_pts)
Maps any sensitive attributes to predefined categories and data types.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
ed_pts |
DataFrame
|
ED attendance patients. |
required |
Returns:
Type | Description |
---|---|
DataFrame
|
pl.DataFrame: Updated data. |